Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Heliyon ; 10(5): e27452, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463823

ABSTRACT

The analysis of SARS-CoV-2 in wastewater has enabled us to better understand the spread and evolution of the virus worldwide. To deepen our understanding of its epidemiological and genomic characteristics, we analyzed 10,147 SARS-CoV-2 sequences from 5 continents and 21 countries that were deposited in the GISAID database up until January 31, 2023. Our results revealed over 100 independent lineages of the virus circulating in water samples from March 2020 to January 2023, including variants of interest and concern. We observed four clearly defined periods of global distribution of these variants over time, with one variant being replaced by another. Interestingly, we found that SARS-CoV-2 water-borne sequences from different countries had a close phylogenetic relationship. Additionally, 40 SARS-CoV-2 water-borne sequences from Europe and the USA did not show any phylogenetic relationship with SARS-CoV-2 human sequences. We also identified a significant number of non-synonymous mutations, some of which were detected in previously reported cryptic lineages. Among the countries analyzed, France and the USA showed the highest degree of sequence diversity, while Austria reported the highest number of genomes (6,296). Our study provides valuable information about the epidemiological and genomic diversity of SARS-CoV-2 in wastewater, which can be employed to support public health initiatives and preparedness.

2.
J Neuroinflammation ; 21(1): 66, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459557

ABSTRACT

INTRODUCTION: Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the Huntingtin gene (HTT). Immune activation is abundant in the striatum of HD patients. Detection of active microglia at presymptomatic stages suggests that microgliosis is a key early driver of neuronal dysfunction and degeneration. Recent studies showed that deletion of Tyrobp, a microglial protein, ameliorates neuronal dysfunction in Alzheimer's disease amyloidopathy and tauopathy mouse models while decreasing components of the complement subnetwork. OBJECTIVE: While TYROBP/DAP12-mediated microglial activation is detrimental for some diseases such as peripheral nerve injury, it is beneficial for other diseases. We sought to determine whether the TYROBP network is implicated in HD and whether Tyrobp deletion impacts HD striatal function and transcriptomics. METHODS: To test the hypothesis that Tyrobp deficiency would be beneficial in an HD model, we placed the Q175 HD mouse model on a Tyrobp-null background. We characterized these mice with a combination of behavioral testing, immunohistochemistry, transcriptomic and proteomic profiling. Further, we evaluated the gene signature in isolated Q175 striatal microglia, with and without Tyrobp. RESULTS: Comprehensive analysis of publicly available human HD transcriptomic data revealed that the TYROBP network is overactivated in the HD putamen. The Q175 mice showed morphologic microglial activation, reduced levels of post-synaptic density-95 protein and motor deficits at 6 and 9 months of age, all of which were ameliorated on the Tyrobp-null background. Gene expression analysis revealed that lack of Tyrobp in the Q175 model does not prevent the decrease in the expression of striatal neuronal genes but reduces pro-inflammatory pathways that are specifically active in HD human brain, including genes identified as detrimental in neurodegenerative diseases, e.g. C1q and members of the Ccr5 signaling pathway. Integration of transcriptomic and proteomic data revealed that astrogliosis and complement system pathway were reduced after Tyrobp deletion, which was further validated by immunofluorescence analysis. CONCLUSIONS: Our data provide molecular and functional support demonstrating that Tyrobp deletion prevents many of the abnormalities in the HD Q175 mouse model, suggesting that the Tyrobp pathway is a potential therapeutic candidate for Huntington's disease.


Subject(s)
Huntington Disease , Mice , Animals , Humans , Huntington Disease/metabolism , Microglia/metabolism , Gliosis/genetics , Gliosis/metabolism , Proteomics , Corpus Striatum/metabolism , Disease Models, Animal , Mice, Transgenic , Membrane Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism
3.
PLoS Negl Trop Dis ; 18(2): e0011981, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38377140

ABSTRACT

BACKGROUND: Chagas disease, affecting approximately eight million individuals in tropical regions, is primarily transmitted by vectors. Rhodnius prolixus, a triatomine vector, commonly inhabits in ecotopes with diverse palm tree species, creating optimal conditions for vector proliferation. This study aims to explore the transmission ecology of Trypanosoma cruzi, the causative parasite of Chagas disease, by investigating the feeding patterns and natural infection rates of R. prolixus specimens collected from various wild palm species in the Colombian Orinoco region. MATERIALS AND METHODS: To achieve this objective, we sampled 35 individuals from three palm species (Attalea butyracea, Acrocomia aculeata, and Mauritia flexuosa) in a riparian forest in the Casanare department of eastern Colombia, totaling 105 sampled palm trees. DNA was extracted and analyzed from 115 R. prolixus specimens at different developmental stages using quantitative PCR (qPCR) for T. cruzi detection and identification of discrete typing units. Feeding preferences were determined by sequencing the 12S rRNA gene amplicon through next-generation sequencing. RESULTS: A total of 676 R. prolixus specimens were collected from the sampled palms. The study revealed variation in population densities and developmental stages of R. prolixus among palm tree species, with higher densities observed in A. butyracea and lower densities in M. flexuosa. TcI was the exclusive T. cruzi discrete typing unit (DTU) found, with infection frequency positively correlated with R. prolixus abundance. Insects captured in A. butyracea exhibited higher abundance and infection rates than those from other palm species. The feeding sources comprised 13 mammal species, showing no significant differences between palm species in terms of blood sources. However, Didelphis marsupialis and Homo sapiens were present in all examined R. prolixus, and Dasypus novemcinctus was found in 89.47% of the insects. CONCLUSION: This study highlights the significance of wild palms, particularly A. butyracea, as a substantial risk factor for T. cruzi transmission to humans in these environments. High population densities and infection rates of R. prolixus were observed in each examined palm tree species.


Subject(s)
Chagas Disease , Rhodnius , Triatominae , Trypanosoma cruzi , Animals , Humans , Trees , Trypanosoma cruzi/genetics , Colombia/epidemiology , Chagas Disease/epidemiology , Armadillos
4.
J Virol ; 98(1): e0150723, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38095414

ABSTRACT

A comprehensive understanding of the virome in mosquito vectors is crucial for assessing the potential transmission of viral agents, designing effective vector control strategies, and advancing our knowledge of insect-specific viruses (ISVs). In this study, we utilized Oxford Nanopore Technologies metagenomics to characterize the virome of Aedes aegypti mosquitoes collected in various regions of Colombia, a country hyperendemic for dengue virus (DENV). Analyses were conducted on groups of insects with previous natural DENV infection (DENV-1 and DENV-2 serotypes), as well as mosquito samples that tested negative for virus infection (DENV-negative). Our findings indicate that the Ae. aegypti virome exhibits a similar viral composition at the ISV family and species levels in both DENV-positive and DENV-negative samples across all study sites. However, differences were observed in the relative abundance of viral families such as Phenuiviridae, Partitiviridae, Flaviviridae, Rhabdoviridae, Picornaviridae, Bromoviridae, and Virgaviridae, depending on the serotype of DENV-1 and DENV-2. In addition, ISVs are frequently found in the core virome of Ae. aegypti, such as Phasi Charoen-like phasivirus (PCLV), which was the most prevalent and showed variable abundance in relation to the presence of specific DENV serotypes. Phylogenetic analyses of the L, M, and S segments of the PCLV genome are associated with sequences from different regions of the world but show close clustering with sequences from Brazil and Guadeloupe, indicating a shared evolutionary relationship. The profiling of the Ae. aegypti virome in Colombia presented here improves our understanding of viral diversity within mosquito vectors and provides information that opens the way to possible connections between ISVs and arboviruses. Future studies aimed at deepening our understanding of the mechanisms underlying the interactions between ISVs and DENV serotypes in Ae. aegypti could provide valuable information for the design of effective vector-borne viral disease control and prevention strategies.IMPORTANCEIn this study, we employed a metagenomic approach to characterize the virome of Aedes aegypti mosquitoes, with and without natural DENV infection, in several regions of Colombia. Our findings indicate that the mosquito virome is predominantly composed of insect-specific viruses (ISVs) and that infection with different DENV serotypes (DENV-1 and DENV-2) could lead to alterations in the relative abundance of viral families and species constituting the core virome in Aedes spp. The study also sheds light on the identification of the genome and evolutionary relationships of the Phasi Charoen-like phasivirus in Ae. aegypti in Colombia, a widespread ISV in areas with high DENV incidence.


Subject(s)
Aedes , Dengue Virus , Dengue , Animals , Humans , Aedes/virology , Dengue/transmission , Dengue Virus/genetics , Insect Viruses , Mosquito Vectors/virology , Phylogeny , Serogroup
5.
Infect Genet Evol ; 117: 105543, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38135265

ABSTRACT

Livestock plays a crucial role in ensuring food security and driving the global economy. However, viral infections can have far-reaching consequences beyond economic productivity, affecting the health of cattle, as well as posing risks to human health and other animals. Identifying viruses present in fecal samples, a primary route of pathogen transmission, is essential for developing effective prevention, control, and surveillance strategies. Viral metagenomic approaches offer a broader perspective and hold great potential for detecting previously unknown viruses or uncovering previously undescribed agents. Ubaté Province is Colombia's dairy capital and a key center for livestock production in the country. Therefore, the purpose of this study was to characterize viral communities in fecal samples from cattle in this region. A total of 42 samples were collected from three municipalities in Ubaté Province, located in central Colombia, using a convenient non-probabilistic sampling method. We utilized metagenomic sequencing with Oxford Nanopore Technologies (ONT), combined with diversity and phylogenetic analysis. The findings revealed a consistent and stable viral composition across the municipalities, primarily comprising members of the Picornaviridae family. At the species level, the most frequent viruses were Enterovirus E (EVE) and Bovine Astrovirus (BoAstV). Significantly, this study reported, for the first time in Colombia, the presence of viruses with veterinary importance occurring at notable frequencies: EVE (59%), Bovine Kobuvirus (BKV) (52%), and BoAstV (19%). Additionally, the study confirmed the existence of Circular replicase-encoding single-stranded (CRESS) Virus in animal feces. These sequences were phylogenetically grouped with samples obtained from Asia and Latin America, underscoring the importance of having adequate representation across the continent. The virome of bovine feces in Ubaté Province is characterized by the predominance of potentially pathogenic viruses such as BoAstV and EVE that have been reported with substantial frequency and quantities. Several of these viruses were identified in Colombia for the first time. This study showcases the utility of using metagenomic sequencing techniques in epidemiological surveillance. It also paves the way for further research on the influence of these agents on bovine health and their frecuency across the country.


Subject(s)
Astroviridae , Enterovirus , Kobuvirus , Viruses , Humans , Animals , Cattle , Phylogeny , Prevalence , Colombia/epidemiology , Astroviridae/genetics , Feces , Metagenomics
6.
Sci Rep ; 13(1): 16973, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37813873

ABSTRACT

Wetlands represent key ecosystems due to their remarkable biodiversity, ecological functions and multiple ecosystem services provided. In Colombia, there are 31,702 wetlands, 13 of which are in Bogotá, capital of the country. Despite the fundamental socioecological support of these aquatic ecosystems, a tremendous loss and degradation of these ecosystems has been observed due to anthropogenic perturbations. Therefore, the aim of this study was to describe the status of seven Bogotá wetlands with variable anthropogenic interventions by measuring organoleptic, physicochemical, and microbiological parameters, using commercial kits, highly sensitive equipment, and next-generation sequencing of the 16S- and 18S-rRNA genes. Our findings describe the status of seven wetlands with different anthropogenic burden in Bogotá-Colombia where physicochemical and microbiology signals of contamination were observed. Additionally, some profiles in the composition of the microbial communities, together with certain physicochemical characteristics, may represent an insight into the environmental dynamics, where Beta Proteobacteria such as Malikia represent a potential keystone in aquatic ecosystems impacted by wastewater effluent discharges; the presence of nitrates and phosphates explain the abundance of bacteria capable of oxidizing these compounds, such as Polynucleobacter. Moreover, the presence of specific prokaryotic and eukaryotic organisms, such as Clostridium, Cryptococcus, Candida, and Naegleria, reported in one or more of the wetlands assessed here, could represent a possible pathogenic risk for human and animal health. This study performed a complete evaluation of seven Bogotá wetlands with different anthropogenic impacts for the first time, and our findings emphasize the importance of maintaining continuous monitoring of these water bodies given their remarkable ecological importance and potential spill-over of several pathogens to humans and animals.


Subject(s)
Microbiota , Wetlands , Animals , Humans , Ecosystem , Colombia , High-Throughput Nucleotide Sequencing , Microbiota/genetics , Bacteria/genetics
7.
Molecules ; 28(18)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37764323

ABSTRACT

In recent years, the determination of the antioxidant and antibacterial activity of essential oils in wild plants, such as Mexican oregano (Lippia graveolens Kunth), has become increasingly important. The objective was to compare the antioxidant and antibacterial activity of Mexican oregano essential oil obtained from plants occurring naturally in semiarid areas (Wild1 and Wild2), and those cultivated in the field (CField) and greenhouse (CGreenhouse) in northern Mexico. The Mexican oregano essential oil extraction was performed using the hydrodistillation method, the antioxidant activity was determined using the ABTS method, and the antibacterial activity was assessed through bioassays under the microwell method at nine different concentrations. The aim was to determine the diameter of the inhibition zone and, consequently, understand the sensitivity level for four bacterial species. The results revealed an antioxidant activity ranging from 90% to 94% at the sampling sites, with Wild1 standing out for having the highest average antioxidant activity values. Likewise, six out of the nine concentrations analyzed showed some degree of sensitivity for all the sampling sites. In this regard, the 25 µL mL-1 concentration showed the highest diameter of inhibition zone values, highlighting the Wild2 site, which showed an average diameter greater than 30 mm for the four bacteria tested. Only in the case of S. typhi did the CGreenhouse site surpass the Wild2, with an average diameter of the inhibition zone of 36.7 mm. These findings contribute to the search for new antioxidant and antibacterial options, addressing the challenges that humanity faces in the quest for opportunities to increase life expectancy.

8.
Front Pharmacol ; 14: 1197569, 2023.
Article in English | MEDLINE | ID: mdl-37426815

ABSTRACT

Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide and is the second leading cause of cancer-related death due to an insufficiency prognosis and is generally diagnosed in the last step of development. The Peruvian flora has a wide variety of medicinal plants with therapeutic potential in several diseases. Dodonaea viscosa Jacq. is a plant used to treat inflammatory process as well as gastrointestinal diseases. The aim of this study was to examine the cytotoxic, antiproliferative, and cell death-inducing effects of D. viscosa on colorectal cancer cells (SW480 and SW620). The hydroethanolic extract was obtained by maceration at 70% ethanol, the phytochemical constituents were identified by LC-ESI-MS. D. viscosa revealed 57 compounds some of them are: isorhamnetin, kaempferol, quercetin, methyl dodovisate B, hardwickiic acid, viscosol, and dodonic acid. Regarding the antitumoral activity, D. viscosa induced cytotoxic and antiproliferative activity in both SW480 and SW620 cancer cells, accompanied with, important changes in mitochondrial membrane potential, formation of the Sub G0/G1 population and increasing levels of apoptotic biomarkers (caspase 3 and the tumor suppressor protein p53) in the metastatic derivative cell line (SW620), suggesting an intrinsic apoptotic process after the treatment with the hydroethanolic extract of D. viscosa.

9.
Front Behav Neurosci ; 17: 1202099, 2023.
Article in English | MEDLINE | ID: mdl-37424750

ABSTRACT

Introduction: Infants exposed to opioids in utero are at high risk of exhibiting Neonatal Opioid Withdrawal Syndrome (NOWS), a combination of somatic withdrawal symptoms including high pitched crying, sleeplessness, irritability, gastrointestinal distress, and in the worst cases, seizures. The heterogeneity of in utero opioid exposure, particularly exposure to polypharmacy, makes it difficult to investigate the underlying molecular mechanisms that could inform early diagnosis and treatment of NOWS, and challenging to investigate consequences later in life. Methods: To address these issues, we developed a mouse model of NOWS that includes gestational and post-natal morphine exposure that encompasses the developmental equivalent of all three human trimesters and assessed both behavior and transcriptome alterations. Results: Opioid exposure throughout all three human equivalent trimesters delayed developmental milestones and produced acute withdrawal phenotypes in mice reminiscent of those observed in infants. We also uncovered different patterns of gene expression depending on the duration and timing of opioid exposure (3-trimesters, in utero only, or the last trimester equivalent only). Opioid exposure and subsequent withdrawal affected social behavior and sleep in adulthood in a sex-dependent manner but did not affect adult behaviors related to anxiety, depression, or opioid response. Discussion: Despite marked withdrawal and delays in development, long-term deficits in behaviors typically associated with substance use disorders were modest. Remarkably, transcriptomic analysis revealed an enrichment for genes with altered expression in published datasets for Autism Spectrum Disorders, which correlate well with the deficits in social affiliation seen in our model. The number of differentially expressed genes between the NOWS and saline groups varied markedly based on exposure protocol and sex, but common pathways included synapse development, the GABAergic and myelin systems, and mitochondrial function.

10.
Commun Med (Lond) ; 3(1): 97, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443390

ABSTRACT

BACKGROUND: The emergence of highly transmissible SARS-CoV-2 variants has led to surges in cases and the need for global genomic surveillance. While some variants rapidly spread worldwide, other variants only persist nationally. There is a need for more fine-scale analysis to understand transmission dynamics at a country scale. For instance, the Mu variant of interest, also known as lineage B.1.621, was first detected in Colombia and was responsible for a large local wave but only a few sporadic cases elsewhere. METHODS: To better understand the epidemiology of SARS-Cov-2 variants in Colombia, we used 14,049 complete SARS-CoV-2 genomes from the 32 states of Colombia. We performed Bayesian phylodynamic analyses to estimate the time of variants' introduction, their respective effective reproductive number, and effective population size, and the impact of disease control measures. RESULTS: Here, we detect a total of 188 SARS-CoV-2 Pango lineages circulating in Colombia since the pandemic's start. We show that the effective reproduction number oscillated drastically throughout the first two years of the pandemic, with Mu showing the highest transmissibility (Re and growth rate estimation). CONCLUSIONS: Our results reinforce that genomic surveillance programs are essential for countries to make evidence-driven interventions toward the emergence and circulation of novel SARS-CoV-2 variants.


Colombia reported its first COVID-19 case on 6th March 2020. By April 2022, the country had reported over 6 million infections and over 135,000 deaths. Here, we aim to understand how SARS-CoV-2, the virus that causes COVID-19, spread through Colombia over this time and how the predominant version of the virus (variant) changed over time. We found that there were multiple introductions of different variants from other countries into Colombia during the first two years of the pandemic. The Gamma variant was dominant earlier in 2021 but was replaced by the Delta variant. The Mu variant had the highest potential to be transmitted. Our findings provide valuable insights into the pandemic in Colombia and highlight the importance of continued surveillance of the virus to guide the public health response.

12.
Pharmaceutics ; 15(4)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37111708

ABSTRACT

A series of 5-FU-Curcumin hybrids were synthesized, and their structures were elucidated by spectroscopic analysis. The synthesized hybrid compounds were evaluated in different colorectal cancer cell lines (SW480 and SW620) and in non-malignant cells (HaCaT and CHO-K1), to determine their chemopreventive potential. Hybrids 6a and 6d presented the best IC50 value against the SW480 cell line with results of 17.37 ± 1.16 µM and 2.43 ± 0.33 µM, respectively. Similarly, compounds 6d and 6e presented IC50 results of 7.51 ± 1.47 µM and 14.52 ± 1.31 µM, respectively, against the SW620 cell line. These compounds were more cytotoxic and selective than curcumin alone, the reference drug 5-fluorouracil (5-FU), and the equimolar mixture of curcumin and 5-FU. In addition, hybrids 6a and 6d (in SW480) and compounds 6d and 6e (in SW620) induced cell cycle arrest in S-phase, and, compounds 6d and 6e caused a significant increase in the sub-G0/G1 phase population in both cell lines. Hybrid 6e was also observed to induce apoptosis of SW620 cells with a respective increase in executioner caspases 3 and 7. Taken together, these results suggest that the hybrids could actively act on a colorectal cancer model, making them a privileged scaffold that could be used in future research.

13.
Molecules ; 28(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36903249

ABSTRACT

Agriculture is one of the economic activities with the most potential in Colombia, given its climatic and geographical conditions. Bean cultivation is classified as climbing, which grows in a branched way, and bushy, whose growth occurs up to 70 cm. The objective of this research was to study zinc and iron sulfates in different concentrations as fertilizers capable of increasing the nutritional value of kidney beans (Phaseolus vulgaris L.), whose strategy is known as biofortification, and thus determine the most effective sulfate. The methodology details the sulfate formulations, their preparation, the application of additives, sampling and quantification methods of total iron, total zinc, °Brix, carotenoids, chlorophylls a, b, and antioxidant capacity using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method in leaves and pods. As for the results, it was found that biofortification with iron sulfate and zinc sulfate is a strategy that favors the country's economy and human health, because it allows the increase of minerals, antioxidant capacity and total soluble solids.


Subject(s)
Phaseolus , Humans , Biofortification , Zinc Sulfate , Antioxidants , Colombia , Iron/analysis , Zinc/analysis , Crops, Agricultural
14.
J Fungi (Basel) ; 9(2)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36836249

ABSTRACT

Cryptococcus neoformans species complexes are recognized as environmental fungi responsible for lethal meningoencephalitis in immunocompromised individuals. Despite the vast knowledge about the epidemiology and genetic diversity of this fungus in different regions of the world, more studies are necessary to comprehend the genomic profiles across South America, including Colombia, considered to be the second country with the highest number of Cryptococcosis. Here, we sequenced and analyzed the genomic architecture of 29 Colombian C. neoformans isolates and evaluated the phylogenetic relationship of these strains with publicly available C. neoformans genomes. The phylogenomic analysis showed that 97% of the isolates belonged to the VNI molecular type and the presence of sub-lineages and sub-clades. We evidenced a karyotype without changes, a low number of genes with copy number variations, and a moderate number of single-nucleotide polymorphisms (SNPs). Additionally, a difference in the number of SNPs between the sub-lineages/sub-clades was observed; some were involved in crucial fungi biological processes. Our study demonstrated the intraspecific divergence of C. neoformans in Colombia. These findings provide evidence that Colombian C. neoformans isolates do not probably require significant structural changes as adaptation mechanisms to the host. To the best of our knowledge, this is the first study to report the whole genome sequence of Colombian C. neoformans isolates.

15.
Pharmaceutics ; 14(11)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36365097

ABSTRACT

A series of resveratrol/hydrazone hybrids were obtained and elucidated by spectroscopic analysis. All compounds were evaluated against colorectal cancer cells (SW480 and Sw620) and nonmalignant cell lines (HaCaT and CHO-K1) to establish the selectivity index. Among the hybrids evaluated, compounds 6e and 7 displayed the highest cytotoxic activity with IC50 values of = 6.5 ± 1.9 µM and 19.0 ± 1.4 µM, respectively, on SW480 cells. In addition, hybrid 7 also exhibited activity on SW620 cells with an IC50 value of 38.41 ± 3.3 µM. Both compounds were even more toxic against these malignant cells in comparison to the nonmalignant ones, as evidenced by higher selectivity indices 48 h after treatment. These compounds displayed better activity and selectivity than parental compounds (PIH and Resveratrol) and the reference drug (5-FU). In addition, it was observed that both compounds caused antiproliferative activity probably exerted by cell cycle arrest at the G2/M or G0/G1 phases, with the formation of cells in the subG0/G1 phase. Furthermore, it was noticed that compound 7 induced mitochondrial depolarization in SW480 cells and positive staining for propidium iodide in both cancer cell lines, suggesting cell membrane damage involving either apoptosis or other processes of death.

16.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36297411

ABSTRACT

A series of 5-FU-Genistein hybrids were synthesized and their structures were elucidated by spectroscopic analysis. The chemopreventive potential of these compounds was evaluated in human colon adenocarcinoma cells (SW480 and SW620) and non-malignant cell lines (HaCaT and CHO-K1). Hybrid 4a displayed cytotoxicity against SW480 and SW620 cells with IC50 values of 62.73 ± 7.26 µM and 50.58 ± 1.33 µM, respectively; compound 4g induced cytotoxicity in SW620 cells with an IC50 value of 36.84 ± 0.71 µM. These compounds were even more selective than genistein alone, the reference drug (5-FU) and the equimolar mixture of genistein plus 5-FU. In addition, hybrids 4a and 4g induced time- and concentration-dependent antiproliferative activity and cell cycle arrest at the S-phase and G2/M. It was also observed that hybrid 4a induced apoptosis in SW620 cells probably triggered by the extrinsic pathway in response to the activation of p53, as evidenced by the increase in the levels of caspases 3/8 and the tumor suppressor protein (Tp53). Molecular docking studies suggest that the most active compound 4a would bind efficiently to proapoptotic human caspases 3/8 and human Tp53, which in turn could provide valuable information on the biochemical mechanism for the in vitro cytotoxic response of this compound in SW620 colon carcinoma cell lines. On the other hand, molecular dynamics (MD) studies provided strong evidence of the conformational stability of the complex between caspase-3 and hybrid 4a obtained throughout 100 ns all-atom MD simulation. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analyses of the complex with caspase-3 showed that the interaction between the ligand and the target protein is stable. Altogether, the results suggest that the active hybrids, mainly compound 4a, might act by modulating caspase-3 activity in a colorectal cancer model, making it a privileged scaffold that could be used in future investigations.

17.
Microbiol Spectr ; 10(5): e0173622, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36069609

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are characterized by differences in transmissibility and response to therapeutics. Therefore, discriminating among them is vital for surveillance, infection prevention, and patient care. While whole-genome sequencing (WGS) is the "gold standard" for variant identification, molecular variant panels have become increasingly available. Most, however, are based on limited targets and have not undergone comprehensive evaluation. We assessed the diagnostic performance of the highly multiplexed Agena MassARRAY SARS-CoV-2 Variant Panel v3 to identify variants in a diverse set of 391 SARS-CoV-2 clinical RNA specimens collected across our health systems in New York City, USA and Bogotá, Colombia (September 2, 2020 to March 2, 2022). We demonstrated almost perfect levels of interrater agreement between this assay and WGS for 9 of 11 variant calls (κ ≥ 0.856) and 25 of 30 targets (κ ≥ 0.820) tested on the panel. The assay had a high diagnostic sensitivity (≥93.67%) for contemporary variants (e.g., Iota, Alpha, Delta, and Omicron [BA.1 sublineage]) and a high diagnostic specificity for all 11 variants (≥96.15%) and all 30 targets (≥94.34%) tested. Moreover, we highlighted distinct target patterns that could be utilized to identify variants not yet defined on the panel, including the Omicron BA.2 and other sublineages. These findings exemplified the power of highly multiplexed diagnostic panels to accurately call variants and the potential for target result signatures to elucidate new ones. IMPORTANCE The continued circulation of SARS-CoV-2 amid limited surveillance efforts and inconsistent vaccination of populations has resulted in the emergence of variants that uniquely impact public health systems. Thus, in conjunction with functional and clinical studies, continuous detection and identification are quintessential to informing diagnostic and public health measures. Furthermore, until WGS becomes more accessible in the clinical microbiology laboratory, the ideal assay for identifying variants must be robust, provide high resolution, and be adaptable to the evolving nature of viruses like SARS-CoV-2. Here, we highlighted the diagnostic capabilities of a highly multiplexed commercial assay to identify diverse SARS-CoV-2 lineages that circulated from September 2, 2020 to March 2, 2022 among patients seeking care in our health systems. This assay demonstrated variant-specific signatures of nucleotide/amino acid polymorphisms and underscored its utility for the detection of contemporary and emerging SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Mass Spectrometry , RNA , Nucleotides , Amino Acids
18.
Travel Med Infect Dis ; 49: 102402, 2022.
Article in English | MEDLINE | ID: mdl-35840078

ABSTRACT

Monkeypox is a zoonotic disease with clinical manifestations similar to smallpox in humans. Since May 13, 2022, an increasing number of suspected and confirmed cases have been reported, affecting non-endemic regions across the globe. More strikingly, reports from the current outbreak reveal unique aspects regarding transmission dynamics and an unprecedented, rapidly expanding and sustained community transmission. As demonstrated through the still-ongoing COVID-19 pandemic, genomic surveillance has been an essential resource for monitoring and tracking the evolution of pathogens of public health relevance. Herein, we performed a phylogenomic analysis of available Monkeypox virus (MPXV) genomes to determine their evolution and diversity. Our analysis revealed that all MPXV genomes grouped into three monophyletic clades: two previously characterized clades and a newly emerging clade harboring genomes from the ongoing 2022 multi-country outbreak with 286 genomes comprising the hMPXV-1A clade and the newly classified lineages: A.1 (n = 6), A.1.1 (n = 1), A.2 (n = 3) and B.1 (n = 262), where lineage B.1 includes all MPXV genomes from the 2022 outbreak. Finally, it was estimated that B.1 lineage of this clade emerged in Europe on 03/02/2022 [95%CI = 11/13/2021 to 05/10/2022]. The exceptional surge of cases and the broader geographical expansion suggest multifactorial factors as drivers of the current outbreak dynamics. Such factors may include the cessation of smallpox vaccination and its potential spread across particular networks. Integrating pertinent epidemiological information with genomic surveillance information will help generate real-time data to help implement adequate preventive and control measures by optimizing public health decisions to mitigate this outbreak.


Subject(s)
COVID-19 , Smallpox , Disease Outbreaks , Humans , Monkeypox virus/genetics , Pandemics , Phylogeny
19.
medRxiv ; 2022 May 29.
Article in English | MEDLINE | ID: mdl-35665019

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are characterized by differences in transmissibility and response to therapeutics. Therefore, discriminating among them is vital for surveillance, infection prevention, and patient care. While whole viral genome sequencing (WGS) is the "gold standard" for variant identification, molecular variant panels have become increasingly available. Most, however, are based on limited targets and have not undergone comprehensive evaluation. We assessed the diagnostic performance of the highly multiplexed Agena MassARRAY ® SARS-CoV-2 Variant Panel v3 to identify variants in a diverse set of 391 SARS-CoV-2 clinical RNA specimens collected across our health systems in New York City, USA as well as in Bogotá, Colombia (September 2, 2020 - March 2, 2022). We demonstrate almost perfect levels of interrater agreement between this assay and WGS for 9 of 11 variant calls (κ ≥ 0.856) and 25 of 30 targets (κ ≥ 0.820) tested on the panel. The assay had a high diagnostic sensitivity (≥93.67%) for contemporary variants (e.g., Iota, Alpha, Delta, Omicron [BA.1 sublineage]) and a high diagnostic specificity for all 11 variants (≥96.15%) and all 30 targets (≥94.34%) tested. Moreover, we highlight distinct target patterns that can be utilized to identify variants not yet defined on the panel including the Omicron BA.2 and other sublineages. These findings exemplify the power of highly multiplexed diagnostic panels to accurately call variants and the potential for target result signatures to elucidate new ones. Importance: The continued circulation of SARS-CoV-2 amidst limited surveillance efforts and inconsistent vaccination of populations has resulted in emergence of variants that uniquely impact public health systems. Thus, in conjunction with functional and clinical studies, continuous detection and identification are quintessential to inform diagnostic and public health measures. Furthermore, until WGS becomes more accessible in the clinical microbiology laboratory, the ideal assay for identifying variants must be robust, provide high resolution, and be adaptable to the evolving nature of viruses like SARS-CoV-2. Here, we highlight the diagnostic capabilities of a highly multiplexed commercial assay to identify diverse SARS-CoV-2 lineages that circulated at over September 2, 2020 - March 2, 2022 among patients seeking care at our health systems. This assay demonstrates variant-specific signatures of nucleotide/amino acid polymorphisms and underscores its utility for detection of contemporary and emerging SARS-CoV-2 variants of concern.

20.
Viruses ; 14(6)2022 06 07.
Article in English | MEDLINE | ID: mdl-35746705

ABSTRACT

Genomic surveillance of SARS-CoV-2 is one of the tools that provide genomic information on circulating variants. Given the recent emergence of the Omicron (B.1.1.529) variant, this tool has provided data about this lineage's genomic and epidemiological characteristics. However, in South America, this variant's arrival and genomic diversity are scarcely known. Therefore, this study determined the genomic diversity and phylogenetic relationships of 21,615 Omicron genomes available in public databases. We found that in South America, BA.1 (n = 15,449, 71%) and BA.1.1 (n = 6257, 29%) are the dominant sublineages, with several mutations that favor transmission and antibody evasion. In addition, these lineages showed cryptic transmission arriving on the continent in late September 2021. This event may have contributed to the dispersal of Omicron sublineages and the acquisition of new mutations. Considering the genomic and epidemiological characteristics of these lineages, especially those with a high number of mutations in their genome, it is important to conduct studies and surveillance on the dynamics of these lineages to identify the mechanisms of mutation acquisition and their impact on public health.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics , Humans , Phylogeny , SARS-CoV-2/genetics , South America/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...